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Abstrac t  

Recent advances in direct methods are applied to 
structurally isomorphous pairs; in particular the prob- 
abilistic theory of the three-phase structure invariant in 
P1 is worked out. The neighborhood principle plays the 
central role. Specifically, the six-magnitude first neigh- 
borhood of each of the four kinds of three-phase 
structure invariant is defined and the joint probability 
distribution of the corresponding six structure factors is 
derived. This distribution leads to the conditional 
probability distribution of each kind of three-phase 
structure invariant, assuming as known the six magni- 
tudes in its first neighborhood. In the favorable case 
that the variance of the distribution happens to be 
small, one obtains a reliable estimate (0 or 70 of the 
structure invariant [the neighborhood principle: 
Hauptman (1975). Acta Crypt. A31, 680-687]. 

1. Introduct ion  

Crystal structures having as many as 80-100 
independent nonhydrogen atoms are more or less 
routinely solvable nowadays by direct methods. For 
macromolecules, on the other hand, the method of 
isomorphous replacement is almost universally used. It 
is natural to suppose that the ability to combine the two 
techniques would lead to methods more powerful than 
either. This fusion of the two techniques has now been 
accomplished and is described here; the initial ap- 
plications strongly suggest that the anticipated gain in 
power has in fact been realized (Hauptman, Potter & 
Weeks, 1982). It is noteworthy that the neighborhood 
principle, which has played such an important part in 
the recent development of the more traditional direct 
methods, here plays an indispensable role. 

If fj  and gj denote atomic structure factors for a 
corresponding pair of isomorphous structures in P1, 
then respective normalized structure factors E n and Gn 
are defined by 

1 N 
EH = IEnI exp (iqTH) = - - ~ f j e x p  (27r/H.b) , (1.1) 

'~ 20 ~ =  
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1 N 
Gu= IGul exp ( i ~ , H ) = ~ Z  gjexp (2uiH.rj) (1.2) 

02 j =  1 

where 
N 

- - ~ f T g " ,  (1.3) Ct m n  J 

j =  1 

some of the f / s  (or gj's) may be zero (or negative in the 
neutron diffraction case), and rj is the position vector of 
the atom labeled j. This formulation includes not only 
the case of two strictly isomorphous structures but 
also, for example, the special case that thefstructure is 
a native protein and the g structure a heavy-atom 
isomorphous derivative, as well as the case that one or 
both sets of data are obtained by neutron diffraction. 
The ~ and gj are zero-angle atomic scattering factors 
and are therefore equal to the atomic numbers Zj in the 
X-ray diffraction case but may be negative in the 
neutron diffraction case. 

In the case of no isomorphism the problem of crystal 
structure determination, and therefore the phase prob- 
lem, has long been known to be solvable in principle 
because the number of observable structure factor 
magnitudes I Enl in general exceeds by far the number 
(3N) of atomic coordinates needed to define the 
structure. This redundancy has in fact been exploited to 
yield simple relationships among the structure factors 
having probabilistic validity, and these in turn have 
played a key role in the solution of the phase problem. 
If now one assumes as known, in addition to the 
structure-factor magnitudes I Enl,  the structure-factor 
magnitudes I Gnl for an isomorphous structure, then, in 
effect, the number of available data has been doubled 
(or at least greatly increased) with little or no 
corresponding increase in the number of parameters 
(still approximately 3N) needed to define the unknown 
structure(s). One therefore anticipates that the ability to 
use both sets of observed magnitudes IE a I and I Gn I, 
by increasing the number of available data relative to 
the number of unknowns, will facilitate the solution of 
the phase problem. This expectation is in fact realized 
in several ways as the results obtained in this paper 
show. In the first place, although there are now more 
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290 USE OF DIRECT METHODS IN ISOMORPHOUS REPLACEMENT. I 

phases to be determined (phases ~0 and q/rather than 
phases ~0 alone) than in the case of no isomorphism, the 
far greater number of available structure invariants 
more than compensates for the increased number of 
unknown phases. For example, there now exist two- 
phase structure invariants 

On -- q/n, (1.4) 

having no analogue in the non-isomorphous case, and 
four different kinds of three-phase structure invariant, 

09 0 = ~0 H -t- ~0 K n t- ~0L, O,) 1 = ~0 H -st ~0 K -4- q /L ,  

w2 = ~0n + q/K + q/L, W3 = q/n + q/K + q/L, (1.5) 

where 

H + K +  L - - 0 ,  (1.6) 

whereas only the first (or fourth) kind of structure 
invariant (1.5) can exist in the non-isomorphous case. 
Next, depending on the values of the six magnitudes 

IEHI, IEKI, IgLI, IGHI, IGKI, IGLI (1.7) 

in the first neighborhood of any of the structure 
invariants (1.5), it is possible, in favorable cases, to 
obtain far more reliable estimates for the structure 
invariants (1.5) than is possible in the non-iso- 
morphous ease. Finally, again depending on the values 
of the six magnitudes (1.7), certain of the three-phase 
structure invariants (1.5) having the value ~r may be 
reliably identified, whereas in the non-isomorphous 
ease only those three-phase invariants having the value 
zero can ever be identified by means of the three 
magnitudes in the first neighborhood alone. In sum- 
mary, the existence of six magnitudes I EI and I GI 
which are now available, rather than only the three 
magnitudes I E I (or I G I) in the non-isomorphous case, 
implies that it is now possible to estimate reliably larger 
numbers of three-phase structure invariants than is 
otherwise the ease. 

Although the major goal in this paper is to initiate 
the probabilistic theory of the three-phase structure 
invariant for isomorphous pairs, a brief account of the 
two-phase structure invariant is also given, firstly 
because of its intrinsic interest and importance, 
secondly because it provides the needed introduction to 
the more advanced theory of this invariant, and finally 
because it makes possible a greatly abbreviated 
account of the more complex analysis needed for the 
three-phase structure invariant. The mathematical 
formalism adopted here follows in a general sort of way 
the one introduced recently (Hauptman, 1975a,b) but 
there are some differences in detail. 

2. The probabilistie theory of  the two-phase structure 
invariant ~a. -- WH 

The first neighborhood of the two-phase structure 
invariant (1.4) is defined to consist of the two 
magnitudes 

IEHI, I GHI. (2.1) 

2.1. The joint probability distribution of the two 
structure factors En, Gn. 

It is assumed that an isomorphous pair of structures 
in P1 with atomic position vectors rj, j = 1, 2 , . . . ,  N is 
fixed and that normalized structure factors E and G are 
defined by (1.1)-(1.3). The reciprocal-lattice vector H is 
assumed to be the primitive random variable which is 
uniformly distributed in reciprocal space. Then the 
structure factors En and G., as functions of 
the primitive random variable H, are themselves 
random variables. Denote by P(R,S;0,70 the joint 
probability distribution of the magnitudes I Enl, I Gnl 
and the phases ~0n, q/s of the complex normalized 
structure factors En, Gn. Then, following methods 
previously described (Karle & Hauptman, 1958) 
P(R,S;q~, 70 is given by the fourfold integral 

oo 2n 
RS 

P(R,S;~,70-  (2zc)4 f f po 
0, a = 0 0 , x = O  

x exp {--i[Rp cos ( 0 -  ~) + Sir cos ( X -  70]} 

N 

x ]--I qj dp d trd 0 dz, (2.2) 
j = l  

where 

q j=  xp ~ p c o s ( 2 ~ H . r  1 - 0 )  
~ 2 0  

+ ~ a cos (2zrH. rj -- )0 • (2.3) 
~ 0 2  

Appendix I* contains some preliminary formulas, 
Appendix II the derivation of qj, Appendix III the 

N derivation of l--[j__ 1 qj, and Appendix IV a brief 
description of the techniques devised to evaluate the 
fourfold integral (2.2). The final formula, taken from 
Appendix IV, is simply 

RS I 1 P(R,S;q~,70 - ~(1 -- a 2) exp - - 1  - -a  2 [R2 

- 2aRS cos (O - 70 + S 2] }, (2.4) 

• Appendices I-IX have been deposited'with the British Library 
Lending Division as Supplementary Publication No. SUP 36520 
(23 pp.). Copies may be obtained through The Executive Secretary, 
International Union of Crystallography, 5 Abbey Square, Chester 
CH 1 2HU, England. 
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where ct is defined by 

(111 
a - - 1 / 2  x/-------S" (2.5) 

Ct20 O~02 

Related distributions employing a different pro- 
babilistic background and mathematical formalism 
have been derived in a different context by Srinivasan 
and co-workers; see, for example, Srinivasan & 
Parthasarathy (1976, Ch. 5). 

2.2. The joint probability distribution of  the two 
structure-factor magnitudes IEHI , I Gal 

Under the same assumptions as in § 2.1, IEnl and 
I Gal are random variables whose joint probability 
distribution P(R,S) is obtained by integrating (2.4) with 
respect to ~ and ~ between the limits 0 to 27r. 
Employing (I.8) (from Appendix I) with m = 0 one 
finds 

4RS 
P(R,S) - - - e x p  

l _ a  2 

R E + S 2) [ 2aRS 
(2.6) 

where I 0 is the modified Bessel function (Watson, 
1958). 

S, respectively, is obtained directly from (2.4) by fixing 
R and S and multiplying by a suitable normalizing 
factor: 1 ) 
P ( ~ , ~ l R , S ) = - - ~ e x p  ~ R S c o s ( ~ -  gJ) (2.9) 

1 - o ~  2 

where the normalizing parameter L is not relevant for 
the present purpose. Since the distribution (2.9) 
depends only on the difference ~ - 7 t, (2.9) leads 
directly to the conditional probability distribution of the 
structure invariant 09 = ~0H -- ~'n, given IEal and 
IGal: 

/ P(OIRS) = -~- exp RS cos ~ (2.10) 
1 - - a  2 ' 

where, from (I.8), 

K = 2 n I  0 1 - - a  2R . (2.11) 

Equation (2.10) implies that 

(Pa -- ~/a --~ 0 (2.12) 

provided that 

2 a  
1 - a 2 lEa GnU is large. (2.13) 

2.3. The correlation coefficient r of  the pair IEH 12, 
IGH 12 

The distribution (2.6) leads directly to a formula for 
the correlation coefficient r of the pair IEal E, I Gal E 
[Appendix V, equation (V.6)]: 

((IEHI 2 -  IEnlE)(IGnl 2 -  IGal2))n 
r =  

((REal 2 -  IEal2)2)~/z <(IGal E - IGalZ)Z)~ z 

=a 2 =a 21/a zoao2 • (2.7) 

Clearly, 

0 _< r < 1. (2.8) 

If the averages in (2.7) are taken over all recip- 
rocal-lattice vectors H having a fixed value of sin 0/2 
then r, as a function of sin 0/2 is constant in the case of 
perfect isomorphism. If, however, the isomorphism is 
imperfect, then r will be a monotonically decreasing 
function of sin 0/2; in this case r, as a function of 
sin 0/2, may be regarded as a measure of the degree of 
isomorphism between the two structures. 

2.4. The conditional probability distribution of the 
structure invariant co = ( P n -  ~uH, given the two 
magnitudes IEal, IGal 

The joint conditional probability distribution 
P( q), ~IR,S) of the pair (Pa, gin, given that IEal and 
I GHI have the pre-assigned non-negative values R and 

3. T h e  p r o b a b i l i s t i c  t h e o r y  o f  the  t h r e e - p h a s e  s t ruc ture  
i n v a r l a n t s  

It has already been seen that there are four kinds of 
three-phase structure invariants, (1.5), the first neigh- 
borhood of each of which consists of the six magni- 
tudes (1.7). Our major task therefore is to derive the 
joint probability distribution of the six structure factors 
whose magnitudes constitute the first neighborhood of 
each of the structure invariants (1.5). 

3.1. The joint probability distribution of  the six 
structure factors Ea, EK, E L, Gn, GK, GL, where 
H + K + L = 0 .  

Make the same assumptions as in § 2.1. Denote 
reciprocal space by S, and by S x S x S the threefold 
Cartesian product, i.e. the collection of all ordered 
triples (h,k,l) of reciprocal-lattice vectors h,k,I. The 
primitive random variable is the ordered triple (H,K,L) 
of reciprocal-lattice vectors which is assumed to be 
uniformly distributed over the subset of S x S x S 
defined by (1.6). Then the structure factors EH, EK, EL, 
GH, GK, GL, as functions of the primitive random 
variables H, K, L, are themselves random variables. 
Denote by 

P =  P(R1,RE,Ra,Sl,S2,S3; q)l, ~2, q~a, Y/l, ~tE, ~t3) (3.1) 
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the joint probability distribution of the magnitudes 
IEnl, IEKI, IELI, IG.I, IGKI, IGLI and the phases (Pn, 
¢/~, ~ ,  ~'H, ~'K, ~'L of the complex normalized structure 
factors Em EK, EL, Gm GK, GL. Then, as in § 2.1, P is 
given by the twelvefold integral 

1 
p - _ _  R 1R2R3 S1 S2 S 3 (2n) 12 

2n __ 

× f f Pl P2 P3 0"1 0"2 0"3 
PpP2,P3,O~,e2,o3----O OI, 02, 03, ,,~1, X2, X 3 :  0 

x exp {--i[pl R t cos (01 -- ~1) + P2 R2 cos (02 -- ~2) 

+ p~ R3 cos  (03 - q'3) 

"4- 0" 2 S 1 COS (~ l  

+ 0"2 $2 cos (;t2 

4- O's $3  c o s  (X3 

- ~,,) 

N 
-- ~'3)]} 1-[ qjdpd0.d0dx,  (3.2) 

j=l 

by where qy is now defined 

qj= <exp {(E/12~/02) [p~ cos (27rrI. r j -  0~) 
+ P2 cos (27rK. r j -  02) 

+ P3 cos (2nL. b -  03)] 

+ (igj/ 021/25 [ - - ]  tO 1 COS (2zH" ri--  ZI) 

4- 0" 2 COS (2nK. b --  Z2) 

4- 17 3 COS (2nL. r j - -  ,~3)] }>H+K+L=0. (3.3) 

In view of Appendices I - IV,  Appendices VI-VIII ,  which 
contain the derivation of q j, ]-Ij~l q j, and the 
evaluation of the twelvefold integral (3.2), are greatly 
abbreviated. The final formula [from equation 
(VIII. 13)], the first major result of this paper, is simply 

P = [l/n6(1 -- a2)3] RI R 2 R  3 S 1 S 2 S 3 

x exp {--[1/(1 --32)] 

x (R~ + R~ + R 2 + S ,  ~ + S2 ~ + S~)  

+ 2//[R 1S~ cos ( ~ 1 -  ~1) 

+ R 2 S 2 COS (~b 2 -- ~r/2) + R 3 S 3 Cos (~3 --  ~r/3)] 

+ 2 f loR1R2R3cos  (~1 + ~2 + ~3 )  

+ 2//I[RrR 2 S 3 c o s  (12[~ 14- ~ 2 4 -  ~tr'/3) 

4- R 1 S 2 R  3 c o s  (rib 14- ~r/24- ~ 3 )  

+ S 1 R 2 R 3 c o s  (~r/14- ~24- {~3)] 

+ 2//2[R 1 S 2 S 3 cos (q~t + W2 + W3) 

4- S 1R 2 S 3 COS (~r-I 1 4- ~2 4- ~r/3) 

4- S 1 S 2 R  3 cos (Y-/I 4- ~r/24- 1~3) ] 

+ 2//3 S 1 S  2 S 3 c o s  (~-/14- ~/24- ~ 3 ) } ,  (3 .4)  

where a is defined in (2.5) and 
//--12/(1 - 122), (3.5) 

1 
//0 = ct3/2,~ 32( l __ 122)3 [330 12302 --  3321122o2 1211 

~20 

+ 3 - 1 2 - o 2 1 2 ~ , -  ao3 a]11, (3.6) 

1 
fll  = 82)3[(171"21 --  t211)1222 12~0.5/2/1 _ 1220 130 

02 ~,~t 

--  2(112 320 --  1221 311) 0~02 311 

+ (%3 a2o-- 1212 a11)a21], (3.7) 

1 
//2= 125/2rr2 (I __32)3 [(1212 a°2-- a°3 111)1220 

20 ~02\  ~ 

--  2(a2112 02--O~ 12 a 11)12 20111 

+ (1230 0;02 --  0~21 1211) 12211' (3 .8 )  

1 
/ / 3 1 3 o a 3 / 2 t ,  1 __ 122)3 [a03 a30 3a1212201211 

02 ~,~ 

+ 31221 122o a~1 -  a3o a]1]. (3.9) 

Equation (3.4) should be compared with (2.4). 

3.2. The conditional probability distribution o f  the 
three-phase structure invariant to o = (on + g~¢ + ~ ,  
given the six magnitudes I En 1, f EK I, I ELI, I Gn l, I GKI, 
I GLI in i tsfirst  neighborhood 

Assume again that an isomorphous pair of structures 
in P1 is fixed and that the six non-negative numbers R1, 
R2, Ra, $1, $2, Sa are also specified. Suppose that the 
primitive random variable is the ordered triple (H,K,L) 
which is now assumed to be uniformly distributed over 
the subset of S × S × S defined by (1.6) and 

[EHI = R1, IEK[ ---- R 2, IELI -= R 3, (3.10) 

IGHI=S1 ,  IGKI=S2 ,  I G L I = S  3. (3.11) 

Then the structure invariant 090 = (on + (oK + ~ ,  as a 
function of the primitive random variable (H,K,L), 
is itself a random variable. Denote by 
Po(OolRpR2,Ra, S1,S2,Sa) the conditional probability 
distribution of ~0n + ~ + ~ ,  given (3.10) and (3.11). 
Then Po(.QoIRI,R2,R3,S1,S2,Sa) is derived from (3.4) 
[or equation (VIII. 13) of Appendix VIII] by fixing R1, 
R2, R 3, S 1, S 2, S 3, integrating with respect to ~i,  ~2, 
~'3 from 0 to 2n, and multiplying by a suitable 
normalizing factor. This analysis is briefly described in 
Appendix IX. The final formula [from equation (IX. 1)], 
the second major result of this paper, is 

1 
P°(O°IRI 'R2'Ra'SI 'S2 'Sa)  ~ Koo exp (A o cos Oo), 

(3.12) 
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where 

K o =  2rdo(A o) , (3.13) 

h o =  2{floRt R2 R3 +flx[Rt R2 R3 T(2flR3 $3) 

+ R t $2R3 T(2flR2S2) 

+ S t R2 R3 T(2fR1 St)] 

+ fl2[Rt $2 $3 T(2flR2 $2) T(2flR3 $3) 

+ S t R  2 33 T(2fR1 S 1) T(2fR3.S3) 

+ S t S 2 R 3 T (ErR t S t) T(2fR 2 $2)] 

+ f3 St $2 $3 T (2 fg t  St) T(Eflg2 $2) 

x T(EfR 3 $3)}, (3.14) 

and the function T is the ratio of two modified Bessel 
functions: 

It(z) 
T(z) - (3.15) 

Io(z) 

3.3. The conditional probability distribution of the 
three-phase structure invariant 001 = ~on + ~OK + ~L, 
given the six magnitudes IEnl, IEKI, lEE[, IGnl, 
I GK l, I GEl in itsfirst neighborhood 

With the same probabilistic background as in § 3.2, 
the structure invariant o) 1 - Cn + tPK + ~L, as a function 
of the primitive random variable (H,K,L), is itself a 
random variable whose conditional probability distri- 
bution PI(.QIlRI,RE,R3,SI,S2,S3), given (3.10) and 
(3.11), is derived in the same way as is P0 (Appendix 
IX): 

1 
P t ( O l l R  I 'R2'R3'31'32'33) "~ g l  exp (A 1 cos £2 0, 

(3.16) 

where 

K1 = 2rdo(A 1), (3.17) 

and 

A t = 2{fit R t RE $3 + flo R I RE R3 T(2flR3 $3) 

÷ f l 2 [ g t  8233 T(2flR2S 2) 

+ Sl R2 83 T(2flRl 81)1 

+ fit[R t $2 R 3 r(ZflR 2 $2) T(2flR 3 $3) 

+ S 1 R2 R3 T (2fiR1 31) T(2flR3 33)] 

+ f3 $1 $2 $3 T(2flRt $1) T(2flR2 $2) 

+ f2 $1 32 Ra T(2fRt  S~) T(2fR 2 S 2) 

x T(2flR 3 S3)}, 

the third major result. (3.18) 

3.4. The conditional probability distribution of the 
three-phase structure invariant o9 2 = ~on + g/x + elL, 
given six magnitudes IEnl, IEKI, I ELI, I GHI, I GKI, 
I GLI in itsfirst neighborhood 

With the usual probabilistic background the struc- 
ture invariant 09 2 -- ~0H + ~K + ~L is a random variable 
whose conditional probability distribution, given the six 
magnitudes (3.10) and (3.1 1), is found in the usual way 
(Appendix IX): 

1 
P2(~Q21R I'R 2'R 3'St'32'33) ~--- K22 exp (A 2 c o s  '~72), 

(3.19) 
where 

K2= 2rd0(A 2) (3.20) 

and 

A 2 = 2{f2 R1 $2 Sa +ill[R1 RE $3 T(EfR2 $2) 

+ R t SER 3 T(2flR3S3)] 

+ f3 $1 $2 $3 T(2fRt  St) 

+ floRt R2R3 T(2flR2 82) T(2fR3 $3) 

+ f2[ 31 RE $3 T(EfRI $1) T(2fR2 82) 

+ S t S2Rs T(2flRt 31) T(2flR3 $3)] 

+ fit St RER3 T(EflRt St) T(2flR2 32) 

x T(2fR 3 $3)}, (3.21) 

the fourth major result. 

3.5. The conditional probability distribution of the 
three-phase structure invariant 093 = ~'n + V/K + ~'~, 
given the six magnitudes in its first neighborhood 

As in the previous sections, the structure invariant 
(2) 3 ~ I/,/H + I//K + I/,/L is a random variable whose condi- 
tional probability distribution, given the six magnitudes 
(3.10) and (3.11), is found in the usual way (Appendix 
IX): 

1 
Pa( f231R I 'R2'R3'Sl'32'33) "~ K33 exp (A 3 cos $23), 

(3.22) 
where 

K 3 = 2rd0(A 3) (3.23) 
and 

A 3 :  2{fl 3 S 1 8233 ÷ fl2[R, 3283 T(2fR,  $1) 

+ 81 R2 83 T(2flR2 $2) + 81 32 R3 T(2fR3 $3)] 

+ [3,[R 1R2S 3 T(2flR, S,) T(ZflR 2 S 2) 

+ R1 82 R3 T(2fRx $1) T(2fR3 $3) 

+ Sa R z R 3 T (2fir 2 $2) T(2fR 3 S3)I 

+ floR~R2R 3 T(2fR~S~) T(2fR2S2) 

× T(2flR3 33)},  (3.24) 
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which is the fifth major result of this paper. 
It is noteworthy that in the important special case 

that the f structure is a native protein and the g 
structure a heavy-atom isomorphous derivative then, on 
the basis of some preliminary calculations, it appears 
that 

i 0 < 0 ,  i l  ~> 0, 12 <( 0, i3 ~> 0, (3.25) 

and that ll0 I, Ifl~l, 112 I, lt31 form an approximate 
arithmetic progression. 

4. Concluding remarks 

Recent advances in direct methods have been here 
integrated with the method of isomorphous replace- 
ment, and the probabilistic theory of the three-phase 
structure invariants for an isomorphous pair of 
structures has been worked out in some detail. The 
analysis includes the special case that one member of 
the pair is a native protein and the other member is a 
heavy-atom isomorphous derivative. A great deal of 
additional work remains to be done, e.g. the theory of 
the two-phase structure invariant and the higher-order 
structure invariants and seminvariants, the theory of 
structurally isomorphous triples, quartets, etc., and the 
role of anomalous dispersion. 

The initial applications of the work described here, 
using error-free data from a native protein and a single 
heavy-atom derivative, have been made, and these are 
presented in the following paper (Hauptman, Potter & 
Weeks, 1982). Although these initial results are very 
encouraging, attempts to apply these methods to the 
solution of unknown macromolecular structures must 
first overcome the obstacle presented by structures in 
which the number and occupancy factors of the heavy 
atoms may be unknown a priori. For such structures 

methods must be devised for estimating the param- 
eters, fl, flo, ll ,  t2, and 13 [equations (3.5)-(3.9)], which 
appear in the distributions (3.12), (3.16), (3.19), and 
(3.22), in terms of observed intensities only. Already 
(3.5) expresses i in terms of a, the square root of the 
correlation coefficient of the pair I EH 12, I Gnl2. In a 
similar way it may be shown that to, ill, i2, and i3, are 
likewise expressible in terms of the I E n 12 and the I Gn 12 
alone, but this work is outside the scope of the present 
paper and will be published separately. 

Finally, the effect of errors inherent in experimental 
data as well as imperfect isomorphism has not been 
considered in this paper, the major purpose of which 
has been to formulate the basic theory. It is intended to 
present a study of the effect of errors in real data at a 
later date. 

The research described here was supported by 
DHHS Grant No. GM26195 and Grant No. CHE- 
7911282 from the National Science Foundation, as 
well as a grant from the James H. Cummings 
Foundation, Inc. The author is indebted to Dr Susanne 
Fortier who verified the lengthy calculations briefly 
summarized in this paper. 
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Abstract 

With error-free diffraction data from the protein 
cytochrome c550 from Paracoccus denitrificans, having 
molecular weight M r ~ 14 500, space group P2~212 ~, 

0567-7394/82/030294-07501.00 

and a single PtC12- derivative, estimates (0 or n) of the 
three-phase structure invariants are obtained by recent- 
ly secured direct methods employing the six-magnitude 
first neighborhood [Hauptman (1982). Acta Cryst. 
A38, 289-294] and compared with the known values. 
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